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Abstract

We developed a simplified agent-based model for an avascu-
larised tumour. The model takes into account a healthy tissue
in which blood vessels introduce nutrients that diffuse. In
this tissue, cells move/proliferate/die according to their en-
ergy and the available space for their offspring. They can
mutate to cancerous with a certain probability and can also
change mutated which means that they are affected by their
neighbours states. First, we describe briefly the background
of the problem and previous models made for the particular
avascular state. Then, we describe in detail the rules and ac-
tors our model takes into account and comment on the partic-
ular choices. Next, we present our results from the parameter
exploration. We were interested in finding the critical val-
ues that define the transition between a majority of cancerous
cells and normal cells. We studied the outcome of varying
the effect of neighbours, probability of division and mutation
probability. We discovered a phase transition in the effect of
neighbours parameter space and the effects of the other pa-
rameters in this space. Finally, we discuss the relevance of
the model as well improvements one could make.

Introduction
Cancer is among the leading causes of death worldwide (8.2
million deaths in 2012) (Organization, 2014). Mathematical
models are being created to help understand the underlying
mechanisms of tumour growth and they have the potential to
create a framework to perform virtual experiments and sim-
ulations. This will enable scientists to efficiently observe the
effects of different treatments and improve them or suggest
new ones (Roose et al., 2007).
Cancer can be generally defined as the uncontrolled growth
and spread of cells. Other terms that are used to refer to
it, are malignant tumours and neoplasms. There are more
than 100 types of cancers; lung, liver, stomach, colorectal
and breast cancers are among the ones that cause the most
deaths each year (Organization, 2014). However, they all
have certain characteristics in common: the tumour mass
grows beyond its typical boundaries, and can invade neigh-
bour parts of the body and spread to other organs.
It is still debated how exactly cancer is initiated. The gen-
eral consensus is that several gene mutations are required to

turn a normal cell into a cancer cell. The factors that trigger
these mutations are largely unknown, but are thought to in-
clude both environmental and hereditary properties (Roose
et al., 2007).
Once some tumour cells have appeared, the tumour growth
passes through three different stages: Avascular growth This
stage is characterized by proliferation of tumour cells. The
tumour becomes a solid mass growing by mitosis, there is
no invasion of healthy tissue and the tumour mass growth
depends largely on the nutrients available. Once there are
not enough nutrients, the tumour cells die (necrosis) and
this creates a necrotic core. In this phase, the tumour tends
to have a spherical shape where only cells on the outer
perimeter continue to proliferate. The ones in the middle
are in a rest state (quiescent) and in the centre of the tu-
mour, a necrotic core appears, an accumulation of death
cells. Necrosis and proliferation balance each other and then
the tumour reaches a limit size (Diameter ≈ 1-3 mm).
Tumour-Induced Angiogenesis In this state, tumour cells
from the avascular mass modify the existing vascular struc-
ture to create new vessels that would feed them. The tumour
overcomes its limit size, grows much faster and invades the
surrounding tissue. Tumour cells affect nearby blood ves-
sels to steer new vessels towards them, creating new vascu-
lar structure.
Vascular growth /Invasive tumour This is the more complex
stage. The tumour becomes diffusive and it is not a solid
anymore. The nutrients they feed on is not only the one
available in the perimeter. The formation of necrotic regions
is much more complex, tumours do not have a limit size and
they can grow indefinitely.
In this work, we focused on the modelling of the avascu-
lar stage of the tumour and the factors that provoke the ini-
tial growth. We build a simplified model that takes into ac-
count the key mechanisms determined by a literature review
of previous models. We investigated how the parameters of
the model affect the proportion of cancerous cells. Are there
any key parameters that determine a transition from a major-
ity of cancerous cells to normal ones? Before explaining in
detail our model and our results, we mention previous works



on avascular tumour growth that have inspired the design of
our model.

Previous work
The amount of models of tumour growth is immense, the
vast diversity of models being due to the different scales and
to the different questions one can pose about tumour growth.
Byrne (Byrne, 2010) provides a timeline of the most repre-
sentative models for each phase of tumour growth. Since
in this work we focused on the avascular stage, we are only
going to mention a few of the models made in this area. It
is important to say that this summary of previous efforts is
not trying to give an overview of past work but rather to
highlight the parameters that have been identified to be im-
portant. An extensive review of models of avascular tumour
growth is given by Roose et al. Roose et al. (2007).
Most of the models fall into two categories:

• Continuum mathematical models are expressed in par-
tial differential equations and assume space averaging.

• Discrete cell population models consider a single cell-
scale and cell-cell interactions.

Continuum Cell Populations Models usually describe
the interaction between the cell number density and chem-
ical species that provide nutrients. Typically these models
consist of reaction-diffusion-convection equations.

The earliest spatio-temporal models of avascular tumour
growth consider a tumour to be a three dimensional multi-
cellular spheroid (MCS). Greenspan was the first to propose
a biomechanical model of this kind Greenspan (1972).
The growth of the tumour was considered to be regulated
by a single diffusible chemical (oxygen or glucose) that
was supplied externally. The distribution of the chemical
predicted an underlying structure in the spheroid: regions
of cell proliferation, quiescence and necrosis. However,
there were also several simplifications that gave them little
applicability: The spheroids were assumed to grow radially
symmetric, to compromise of just a single population of
cells and stochastic effects were ignored.

Several modifications and extensions were made to the
model of Greenspan: relaxing the assumption of radially
symmetric, distinguishing different cell populations within
the spheroid, introducing cell movement and pressure.
(Araujo and McElwain, 2004). One of the most represen-
tative models that extended the model of Greenspan, is the
one due to Casciari, Sotirchos, and Sutherland (Casciari
et al., 1992). This model considers a spherical tumour and
the effects of some chemical substances (oxygen, glucose,
lactate, carbon dioxide, and bicarbonate, chloride, and
hydrogen ions) on the cell growth and on the metabolism of
the cell. The basic principle is the fact that diffusion and

nutrient consumption limit the growth. This model also
takes into account changes in the rate of cell proliferation
in different chemical environments and cell movement
described by a law of mass conservation.

Continuum models share several features: they do not
distinguish between individual cells, they see tumours as
continuous masses, stochastic effects are usually neglected
and subcellular phenomena is ignored. A good reference of
continuum models and techniques to analyse treatments is
(Perthame, 2014).

Discrete Cell Population Models There are several
techniques to create discrete models: cellular automata,
lattice Boltzmann methods, agent-based, extended Potts,
and stochastic approach (Roose et al., 2007). All of these
models characterizes the state of a cell to be determined by
a vector variable w = {x, v, u}, where x is the position of
the cell, v is its velocity, and u is a vector characterizing
the cells biological state, which may incorporate its position
in the cell cycle, its interaction with the local biochemical
environment, etc.

One of the first discrete models was the one of Duchting
and Vogelsaenger Düchting and Vogelsaenger (1985) that
consider a complex cell cycle model in a three dimensional
model. Another important one is the one of Qi Qi et al.
(1993) which uses cellular automata rules to reproduce
Gompertz law of cancer growth. Kansal et al. developed
a three-dimensional cellular automaton model Kansal
et al. (2000) that doesn’t include nutrients or mechanical
interaction explicitly but rather set the proliferation and
death rates to be known functions of position. A Cellular
Potts model approach (Turner and Sherratt, 2002), where
each biological cell is made up of several lattice points,
has been used to take into account cell membrane tension,
cell-cell and cell-matrix adhesion, chemotaxis, etc.

Recently a new kind of models have begun to develop
which are the hybrid models, some of them consist of con-
tinuum equations for nutrients concentrations and are linked
to cellular automata models of cell cycle and cell migration.
A good reference for this type of models is (Trucu and Chap-
lain, 2014).

The model
We constructed a model for the initial stages of an avascular
tumour. The underlying space where our model takes place
is a tissue where nutrients are diffusing. In this tissue,
we consider cells that can mutate to cancerous with a
certain probability and move/proliferate/die according to
the amount of nutrients in the underlying patch where they
are located, the available space for their offspring and their
internal energy, which is increased by the nutrients in the



patches they are located.

The underlying space for the dynamics of our model is a
2D grid, which is made of squared patches. This 2D grid
represents the tissue where the cells interact. The cells are
represented as circles and they are assigned a position, a
level of energy, a status that can be either normal, normal
mutated and cancerous. A patch can be occupied by one cell
only. There are special patches that are coded in red and
represent blood vessels. All these elements along with the
setup and updating rules are explained in this section. It is
important to mention that even when in our model, there are
blood vessels, we are still simulating an avascular tumour
since we are not assuming that the tumour is producing its
own blood supply.

Actors and Variables
There are two actors in the model: the cells and the
patches. The cells can be either normal, normal-mutated
or cancerous and the patches can be either normal tissue
or blood vessels. A mutated cell is a cell that follows the
dynamics of a normal cell but its state is affected by its
neighbours. At the beginning of the model, one sets the
initial number of cells in the system (n) and the number of
patches that are going to be blood vessels (b). Each cell i
is assigned a vector of four values (xi, ei, si, ai) which are
its position, its level of energy, its state (normal, mutated
or cancerous) and its available space for their offspring,
respectively. The position can take values in any of the
patches in the 2D grid, the level of energy is consider to be
normalized (0 ≤ ei ≤ 1) and the available space for the
offspring is different if it is cancerous, normal or mutated.
If it is cancerous, we consider it to be any available patch
in the Moore neighbourhood, or “8 neighbours”, and if it is
normal or mutated we consider it to be any available patch
in the von Neumann neighbourhood, “4 neighbours” (Fig. 1)

a) b)

Figure 1: Sketch of the two possible neighbourhoods a) von
Neumann neighbourhood, “4 neighbours” b) Moore neigh-
bourhood, or “8 neighbours”

Each patch pj has assigned a level of nutrients (nj) and
a state that can be either normal tissue or blood vessel. In
the following rules we will only make a distinction if the is
cancerous or not because mutated cells are consider to be
normal cells whose state is affected by its neighbour states.

Parameter Symbol
Initial number of cells n
Number of blood vessels b
Diffusion coefficient d
Consumed nutrients c
Energy to divide of normal cells EN

Energy to divide of cancerous cells EC

Prob for divide of normal cells pN
Prob for divide of cancerous cells pC
Prob for mutate from normal to cancerous m
Effect of normal neighbours εN
Effect of cancerous neighbours εC

Table 1: Parameters of the model

Setup
1. First, we set the values of the parameters listed in Table 1

2. Each patch is assigned as its nutrients level a uniform ran-
dom value in [0, 1] and a green-scaled colour based on its
nutrient value.

3. n cells are created and located randomly in the patches.
All cells have “normal” status and are assigned an internal
energy drawn uniform-randomly in [0, 1].

4. m patches are selected uniform-randomly to be blood ves-
sels and their colour is set to red.

Update Rule
In each step of the simulation, the update rule of the system
can be divided in three types of updates: cell update, patches
update and status update (Figure 2).
Cell Update

1. First, cells check if there are nutrients in the patch they
occupy, if not; they die with probability 1 − ei. If there
are nutrients, then they go to step 2.

2. Cells consume nutrients and at most the amount deter-
mined by c (i.e. ei = ei + min(c, nj)). The level of
nutrients of the patch is decreased by the same value that
the cell consumed (i.e. nj = nj −min(c, nj)).

3. Then, each cell is checked if it is cancerous or not. If it is
cancerous then it checks if there is space for the offspring
in its Moore neighbourhood and if it has enough energy
to divide (ei > EC). There are four different scenarios
for this:
Space available in the 8 neighbours and enough
nutrients: The cell divides with a probability ei ∗ pC and
if it divides, it reduces its energy by the amount that was
needed to divide, ei = ei − EC . It splits this energy in
half and stays with half of its value and gives the other
half to its daughter.
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Figure 2: Flowchart of the initialization and update rule



Space available in the 8 neighbours and not enough
nutrients: The cell moves randomly to one of the
available 8 neighbours.
No space available in the 8 neighbours and enough
nutrients: The cell waits.
No space available in the 8 neighbours and not enough
nutrients: The cell dies with probability 1− ei.
If the cell is not cancerous, then it checks again if there
is space for the offspring in its 4 neighbours and if
it has enough energy to divide (ei > EN ) There are
analogously four different scenarios for this:
Space available in the 4 neighbours and enough
nutrients: The cell divides with a probability ei ∗ pN and
if it divides, it reduces its energy by the amount that was
needed to divide ei = ei − EN .
Space available in the 4 neighbours and not enough
nutrients: The cell waits.
No space available in the 4 neighbours and enough
nutrients: The cell waits.
No space available in the 4 neighbours and not enough
nutrients: The cell dies with probability 1− ei.

Patches update
If the patch is a blood vessel, then it replenishes its 8 neigh-
bouring patches. That is, if pj is a blood vessel and Φj is the
set of its 8 neighbours, then nl = 1 for all l ∈ Φj . For all
patches it diffuses its level of nutrients with diffusion coeffi-
cient d.
Status update
Each cell checks if its state; if it is normal then with proba-
bility εN ∗ # ofNormal neighbour cells

Total# of neighbouring cells , it will turn into a mutated
cell. If it is a mutated cell then it changes to cancerous with
probability m. If it is cancerous cell it changes to mutated
cell with probability εC ∗ #Cancerous neighbour cells

Total# of neighbouring cells .

Comments on the rules and variables
The variables and rules were chosen to reflect in a realistic
while also intuitive way the dynamics of tumour devel-
opment. First, we chose to ignore the chemical details in
the cell in order to avoid a robust model and instead just
consider the key features that affect tumour growth.
In order to reflect the state of advantage that cancerous cells
have over normal cells, we consider their probability to
divide to be bigger than the one for normal cells (pC > pN ),
their energy needed to divide smaller than for normal
cells (EC < EN ) and the space for their offspring is any
available patch in its 8 neighbours while for normal cells
is just the 4 neighbours. Another advantageous behaviour
cancer cells have in the model is that in the case in which
there is space for offspring and no nutrients, cancerous cells
move to an available patch in its 8 neighbours while normal
cells just wait.

The introduction of mutated cells is to represent an
intermediate state between normal and cancerous cells.
Mutated cells that are carriers of the disease but still behave
as normal cell. Also, experimentally it is possible that a
cell is cancerous and then goes back to being normal. Since
realistically these cells don’t return to the original normal
state, the mutated state are normal cells affected by their
neighbours. These mutated cells represent the hypothesis of
dormant avascular tumour (Udagawa et al., 2002).

Nutrients in the model are oxygen and other chemical
substances that the cell needs to divide or move. Every time
a cell consumes nutrients, it “eats” at the most the value
α or what it can find in the patch. Nutrients diffuse in the
tissue to give a realistic dynamic.

In the probability to divide, we include an energy factor:
ei ∗ p where p = pC or p = pN in order to give a greater
probability of dividing to those cells that have more energy
or to those cells that had enough energy for a while and
were just waiting for space.

In the rules, we included the nutrient diffusion, we need
to clarify that what we are referring as diffusion coefficient
is a number γ ∈ [0, 1] such that whenever the nutrients
diffuses, then each patch gives equal shares of (γ * 100)
percent of its nutrient value to its eight neighbouring
patches. This number γ is not the diffusion coefficient
in the typical sense, however in the classic sense what
we have is a diffusion coefficient (in the physical sense)
1 for (γ * 100) percent of the nutrient and 0 for the other part.

It is important to notice that for all simulations that for a
fixed random mutation probability (< 0.1), if the effect of
normal neighbours is 1 and the effect of cancerous neigh-
bours is 0, then in the end, there are only normal cells,
whereas if the effect of normal neighbours is 1 and the ef-
fect of cancerous neighbours is 0, there are only cancerous
cells. It means that a positive feedback for the proliferation
of tumour cells is directly given by the effect of cancerous
neighbours and a negative feedback is given by increasing
the effect of normal neighbours.
A snapshot of a run of this model is shown in Figure 3.

Results

Measurements

In order to analyse the dynamics of the model, we mea-
sure the percentages of cancerous, clustered normal cells
and clustered cancerous cells. A cancerous cell is said to
be clustered if there are at least 4 other cancerous cells in its
8 neighbours and the same for normal cells.
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Figure 4: a) Boxplots of percentage of mutated tells considering different number of simulations each time and running 700
ticks. b) Boxplots of percentage of mutated tells considering different total steps and considering 100 simulations each time.
All of these experiments were considering the parameters in Table 2.

Figure 3: Snapshot of the model after 100 steps under the
parameters values of Table 2.. Normal, mutated and can-
cerous cells are coloured in blue, cyan and magenta respec-
tively. The patches are coloured in a green scaled manner,
white being the patches with the highest value and black the
lowest. The snapshot shows a majority of mutated cells.

Sensitivity analysis
Since the model is stochastic, first we need to determine how
many simulations and how many steps we need to perform to
be able to conduct a parameter exploration representative of
the general situation. To perform this analysis, we consider
the model with the parameters in Table 2. First, to determine
how many simulation are sufficient, we run the simulation
700 steps and perform 300 simulations. Then, we derive the
boxplot for 25, 50, 100, 200 and 300 simulations and the
statistical information for the Mutated cells (4). Next, by
performing 200 simulations we get similar boxplot. Now
to determine the total number of steps in the simulations,
we run 200 simulations varying the total steps from 100 to
700 (4. We observe that means do not vary that much, and
adopt 500 time steps as our default value. For every set of
parameters, the results were obtained with 100 simulations

and 500 steps.

Parameters Value
n 200
m 30
d 0.8
c 0.02
EN 0.7
EC 0.6
pN 0.7
pC 0.8
m 0.05
εN 0.8
εC 0.4

Table 2: Typical parameters values used in this model

Parameter exploration
For state space exploration we selected the following param-
eters, expected to be of particular importance in the outcome
of the model:

• Effect of neighbours

• Probability of division

• Random mutation probability

Effect of neighbours We use the parameters of Table 2
except EN and EC . These two parameters were varied in
the interval [0, 1] with increments of 0.1. In Figure 5, the
mean and variance of the percentage of mutated and cancer-
ous cells are plotted. The mean value of normal cells in this
parameter configuration is less than 3% so we don’t include
the respective graph.
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Figure 5: Statistical results of varying the effect of normal neighbours (EN ) and the effect of cancerous neighbours (EC) and
considering the parameters of Table 2 a) Mean percentage of mutated cells b)Variance of the percentage of mutated cells c)
Mean percentage of cancerous cells d) Variance of the percentage of cancerous cells. The four graphs show a phase transition
for a majority of mutated cells to cancerous cells. There is only a significant variance value where the phase transition happens.
In a) it is also shown the location of points A = (εN , εC) = (0.8, 0.1) and B = (εN , εC) = (0.8, 0.4) which are of interest
when we vary the probability to divide of normal cells.
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Figure 6: Statistical results of varying the division probability of normal cells (pN ) and fixing the division probability of
cancerous cells to 0.8 for points in the effect of neighbour space: A = (EN , EC) = (0.8, 0.1) and B = (EN , EC) = (0.8, 0.4)
a) Boxplot of Percentage of Mutated and Cancerous Cells in point B b) Boxplot of Percentage of Mutated and Cancerous Cells
in pointA c) Boxplot of Percentage of Clustered Mutated and Cancerous Cells in pointB d) Boxplot of Percentage of Clustered
Mutated and Cancerous Cells in point A. We can see that in point A, changing the value of pN does not affect the dynamics.
However in point B, lowering the value of pN makes the percentage of mutated and cancerous cells comparable.



Probability of division We choose two points in the “ef-
fect of neighbours” parameter space and vary the probabil-
ity of division of normal cells from 0 to 0.7 with a step of
0.1. The two points are A = (EN , EC) = (0.8, 0.1) and
B = (EN , EC) = (0.8, 0.4) and they are shown in the sur-
face plot of the percentage of cells considering the effect of
neighbour (Figure 5 a) ). The statistical results are shown in
Figure 5.

Random mutation probability Under the same parame-
ters as 1), we performed experiments varying the random
mutation probability over three values m = 0.05, 0.15 and
025. It is important to notice that to explore the effect of
neighbours we set m = 0.05. The statistical results of these
experiments are found in Figure 7

Discussion
We have presented a simple agent-based model of tumour
growth which is able to give rise to two different situations:
one where the majority of cells is cancerous and other
one where it is mutated. We have shown the outcomes of
varying the effects of neighbours, probability of division
and mutation probability. One key characteristic is that
normal cells disappear and only mutated and cancerous
cells remain in the model. The biological conclusion is that
in the end, all normal cells become influenced by the state of
their neighbours. We were expecting for more normal cells
to survive however the rules of the agent based model gives
an advantage to cancerous cells in all dimensions (more
space for the offspring, less energy to divide, smaller prob-
ability of dying) which leads to the depletion of normal cells.

The exploration of the effect of neighbours, as we can see
in Figure 5 reveals a phase transition in the two dimensional
parameter space. The variance is larger than 5% only when
the simulations are performed close to the transition. This
creates two types of points in the model: ones far away from
the phase transition, which are stable, and ones close to the
phase transition which are unstable.

By varying the probability of division in two different
points A and B, we can see that in the case of a small prob-
ability of dividing for normal cells, then the percentage of
mutated cells significantly decreases and is comparable to
the amount of cancerous cells in the model ( Figure 6, yel-
low square). This can be explained by the fact that B is a
point close to the phase transition while A is further away.
While varying the probability of division is unrealistic, one
can think of this analysis as studying the different ratios of
division of cancerous and mutated cells. The final variable
that we consider to vary was the random mutation probabil-
ity, we wanted to see if above a certain value for the random
mutation probability, we always have cancerous cells. We
have seen that at least for the parameters of Table 2, we in-

deed have the case that for m = 0.25, there remains only
cancerous cells. It will be important as well to consider other
points in the parameter space as well.
By varying these parameters, we researched both the inter-
nal and external factors for tumour growth. However, an-
other interesting parameter to vary will be the diffusion co-
efficient to see that similarly to the earliest models of avas-
cular tumour growth we have a growth limited by diffusion.
In this model we tried to describe the dynamics of initial
tumour growth using only key principles and concepts with-
out taking into account the chemical and mechanical point
of view. A natural extension of this model would consider
both aspects as well as the cell cycle. However as simpli-
fied as this model may be, it still showed typical behaviour
of avascular tumour growth: tumour proliferation in rich nu-
trient region, a tumour limit size and phase transition in the
parameters.
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Figure 7: Statistical results of varying the mutation probability (m) for different values of effect of cancerous cells and keeping
all the other parameters of Table 2 a) m = 0.05, b) m = 0.15 and c) m = 0.25 In a) we can see the behaviour of Figure 5 a)
where there is a transition from a majority of mutated cells to a majority of cancerous cells by increasing the εC . In b) we can
see that the transition happens in lower values of εC while in c) we can see that the m is so big that there is no transition.
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